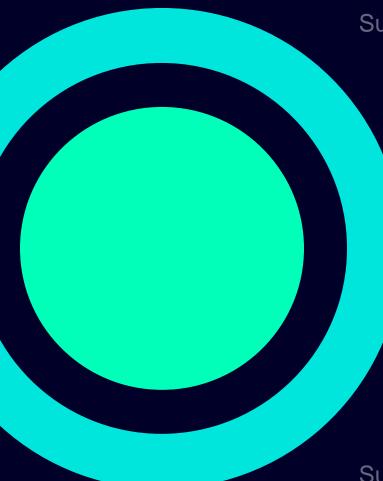
MateriNex launch event Strategic and critical raw materials

The Digital Enterprise for Sustainability: model-based and lifecycle-spanning engineering

Siemens Industry Software NV, Leuven, Belgium

Flanders Make, Leuven, Belgium

KU Leuven, Leuven, Belgium



Siemens DEGREE framework

A 360° view on Siemens priorities in our business and our own operations

Sustainability business

D – Decarbonization

Support the 1.5° C target to fight global warming

E - Ethics

Foster culture of trust, adhere to ethical standards and handle data with care

G – Governance

Apply state-of-the-art systems for effective and responsible business conduct

R – Resource efficiency

Achieve circularity and dematerialization

E – Equity

Foster diversity, inclusion, and community development to create a sense of belonging

E – Employability

Enable our people to stay resilient and relevant in a permanently changing environment

Sustainability in own operations

Customer expectations on LCA tools are increasing with fast growing governmental regulations

Trends

Pressure for increased transparency

Increased scrutiny of environmental claims and concerns of greenwashing

Stakeholder pressure to report the environmental impacts of products and services

Customers

Challenges

LCA integration in product eco-design

Interpret results and make quicker decisions on the environmental trade-offs between alternatives

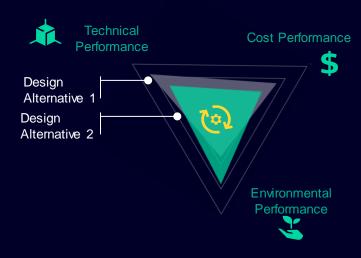
Increase flexibility to perform varying levels of LCA analysis depending on the business need

Enhance data accessibility and quality for conducting reliable LCAs

LCA usage

is shifting left within the

Customer's process assisting them in design and manufacturing to make the right decisions to balance environmental requirements with cost, performance and time-to-market



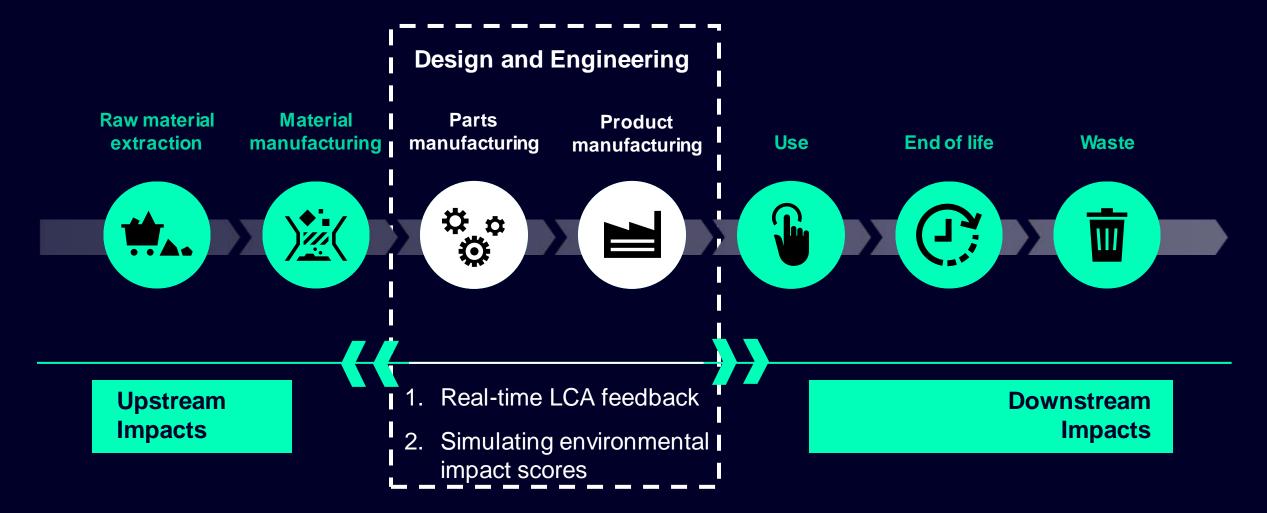
Customer expectations on LCA tools are increasing with fast growing governmental regulations

PREDICTIVE

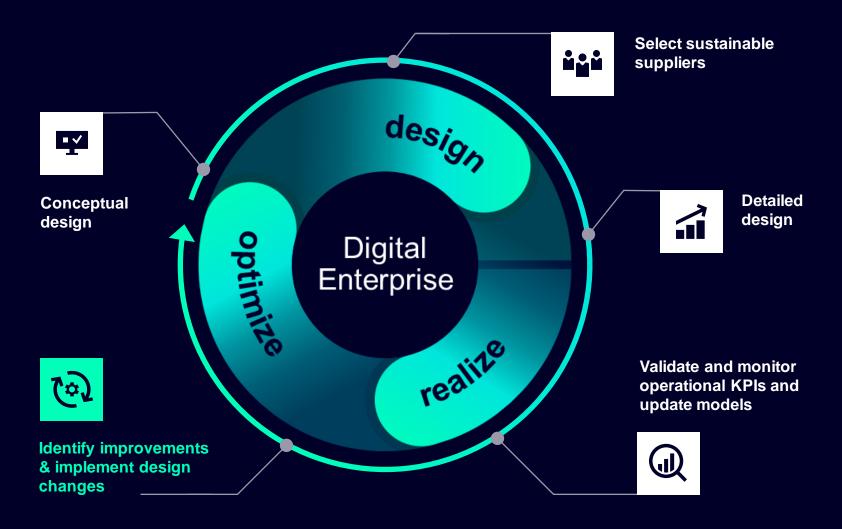
LCA data needed to select materials, manufacturing processes, execute technical analyses /simulations, optimize designs ... at different stages of product maturity iterations.

For **Decision Making**

FULL

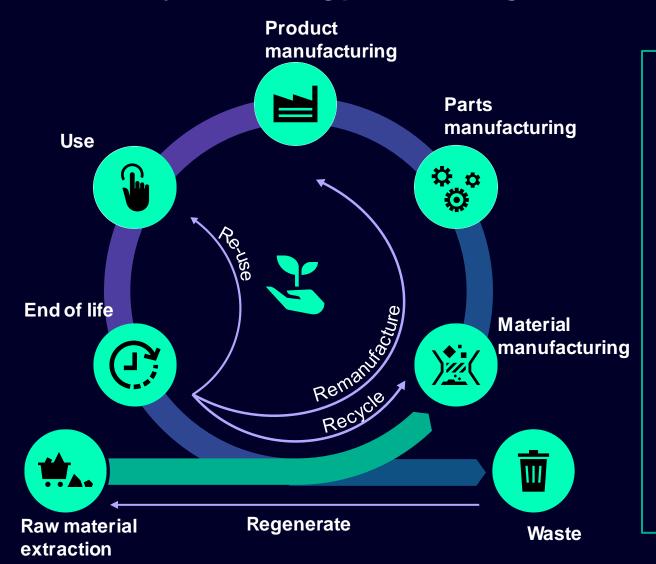

LCA data required to generate a final LCA analysis needed for reporting purposes (e.g. EPDs). Done on a released Bill of materiel (BOM).

EPD


The following impact categories characterize the product's environmental footprint. They have been calculated with LCI methodology EF 3.0, GWP incl. Biogenic Carbon according to EN 15804 + A2; LCA tool: GaBi 10.6, Database content update package: 2021.2.					
Acidification	Mole of H+ eq	1,51E+00	4,68E-01	1,04E+00	-7,33E-0
Global warming potential	kg CO2 eq	5,95E+02	8,72E+01	5,07E+02	1,12E+0
Ecotoxicity, freshwater – total	CTUe	4,32E+03	5,83E+02	3,74E+03	-2,61E+0
Eutrophication, freshwater	kg P eq	1,74E-03	3,87E-04	1,35E-03	-9,83E-0
Eutrophication, marine	kg N eg	3,24E-01	7,64E-02	2,48E-01	-1,85E-0
Eutrophication, terrestrial	Mole of N eq	3,42E+00	8,24E-01	2,60E+00	-1,58E-0
Human toxicity, cancer – total	CTUh	1,96E-07	9,01E-08	1,06E-07	-1,08E-10
Human toxicity, non-cancer - total	CTUh	5,12E-06	1,11E-06	4,01E-06	-3,83E-0
Ionising radiation, human health	kBq U235 eq	2,22E+02	5,02E+00	2,17E+02	-1,60E-0
Land Use	Pt	3,01E+03	1,87E+02	2,82E+03	-2,03E+0
Ozone depletion	kg CFC-11 eg	4,74E-09	4,72E-09	1,20E-11	-8,79E-1
Particulate matter	Disease incidences	1,40E-05	5,25E-06	8,78E-06	-6,21E-0
Photochemical ozone formation, human health	kg NMVOC eq	8,98E-01	2,27E-01	6,72E-01	-5,32E-0
Resource use, fossils	MJ	1,01E+04	1,16E+03	8,90E+03	-1,36E+0
Resource use, mineral and metals	kg Sb eq	8,77E-03	8,62E-03	1,48E-04	-1,30E-0
Water use	m³ world eq	9,53E+01	1,56E+01	7,96E+01	1,34E-0

For **Reporting**

We need real-time feedback on the over-the-lifecycle environmental impact of engineering decisions


Effective Optimization for Sustainability requires a holistic approach Enabled by the Digital Enterprise

- Sustainable concept that is connected to sustainability requirements
- Drive sustainability requirements and compliance within the supply chain
- More sustainable designs and fast innovation with fewer prototypes
- Ensure product performance aligns with sustainability targets
- Seamlessly bring sustainability improvements into new and existing products

Establishing system thinking and applying model-based and lifecycle-spanning engineering

Circularity – rethinking product design to reduce full life cycle impacts

Collaboration along the full value chain is needed!

Building up Belgian consortium along the full value chain to apply for research project

Potential industrial partners:

Tier 1 suppliers

OEM
Material Suppliers
End Users
Recycling company

. . .

Contact

Dr. Anna Matveeva,

Sr. Research Engineer

Siemens Industry Software NV Simulation & Test Solutions Division Strategic Innovation Realization Group Leuven, Belgium

Tel.: +32 16 38 4627

anna.matveeva@siemens.com www.sw.siemens.com

Dr. Giovanna Sauve,

Post Doctoral Researcher

KU Leuven
Department of Materials Engineering
Team of Sustainability Assessments of
Materials and Circular Economy
Leuven, Belgium
Tel.: +32 16 32 60 19

giovanna.sauve@kuleuven.be

Johan Van Noten,

Sr. Application Engineer

Flanders Make
CodesignS
Leuven, Belgium
johan.vannoten@flandersmake.be

