CRM Group

Independent Research organization founded in 1948
Developing industrial solutions involving metals in many sectors

Our development axes

Vision & innovation with industrial solutions

- **ENERGY SHIFT**
- ADVANCED MANUFACTURING
- INDUSTRY 4.0 & DIGITALISATION
- CIRCULAR ECONOMY
- CONSTRUCTION

Battery Cell Design Production Recycling

Lab2Pilot scale Recycling technologies Batteries: Ni, Co, Mn, C, Li, P

Protective or functionalized coating

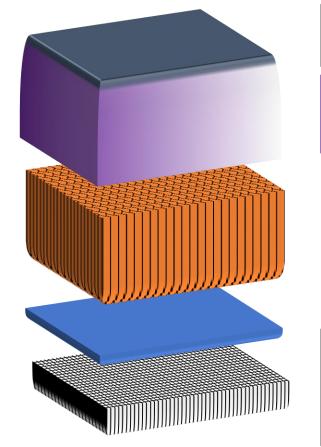
Positive electrode (ex. LMFP, C, binder)

 Ink deposition on current collector or on solid electrolyte at pilot scale

Electrolyte

- Solid or liquid
- Hybrid (organic/inorganic)

Interlayer


Anolyte development pilot scale

Negative electrode

- Ink deposition on current collector or solid electrolyte at pilot scale
- Li metal (lab scale)

- Separation & sorting
- Materials preparation
- (Vacuum) thermal treatment
- Smelting (induction, plasma)

For a better future

Experience on hand for all TRL levels

- Modular and flexible mindset
- Complex boundary conditions (vacuum, clean room ISO7, glove box)
- Broad process window validation including coating formulation
- Multi-technology approach (evaporation, sputtering, wet, dry)
- Wide range of metal and non-metal substrates
- Integration of additional process steps (cleaning, multi-layer)

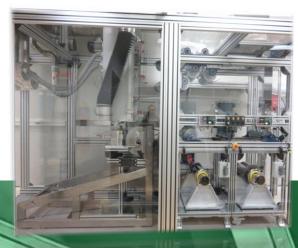
Steel, Al, Cu, plastic

Thickness: 4 µm – 0.4 mm

Lenght: 100 m - 2000m

Width: 50 - 300 mm

Speed rate: 5mm/min - 20 m/min


QR code laser print

TRL 1-3 Glove Box

TRL 3-6 VACUUM deposition TRL 4-6 WET deposition NMP-Free LFP-based ink

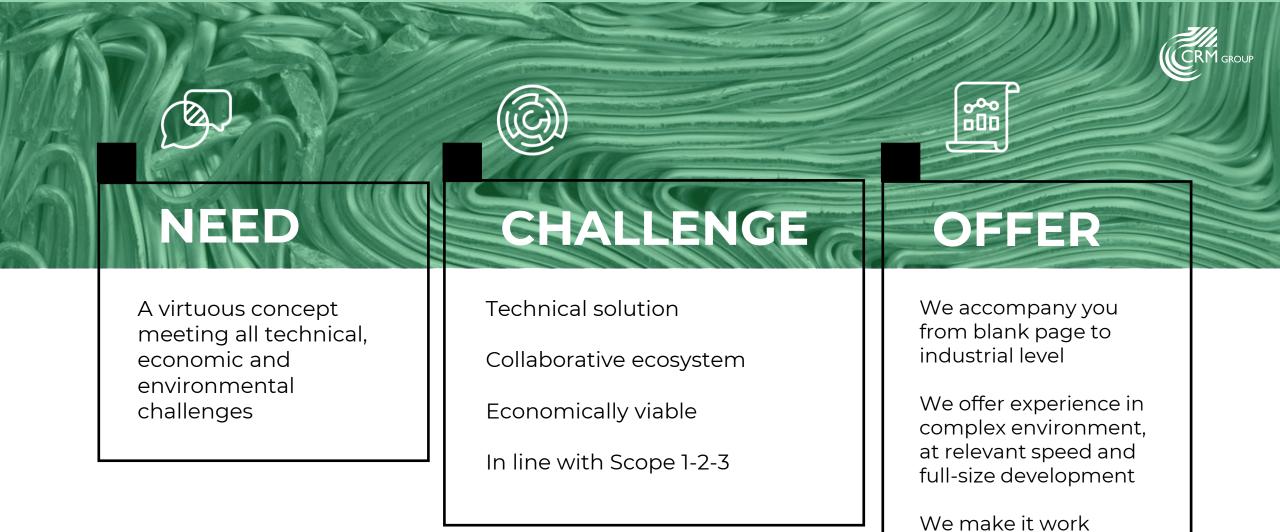
For a better future

In practice today and tomorrow

Funded by the European Union

14 beneficiary partners 7 EU countries Budget = 7 851 448.50€

Advanced high-performance GEN. 4a, 4b (solid-state) Li-ion batteries supporting electro mobility and other applications (01/06/22 – 31/05/26)


Anode	Separator	Cathode
Li metal	Hybrid organic/inorganic	LMFP
	electrolyte	$(LiMn_xFe_{1-x}PO_4)$

Imperial College euro 🗲 support Blue Solutions CSIC Renault Group

Objective : Several dozens of Ah Battery cell
 Project TRL: 1 - 5

- Key concept :
 - 1. Circularity: eco-responsible materials, recycling compatibility
 - 2. Safety: solvent-free process (extrusion), solid electrolyte
 - **3. Efficiency :** interfaces optimization by operando methodologies vs. current Li metal polymer battery (SoA = commercial Li-LFP)

