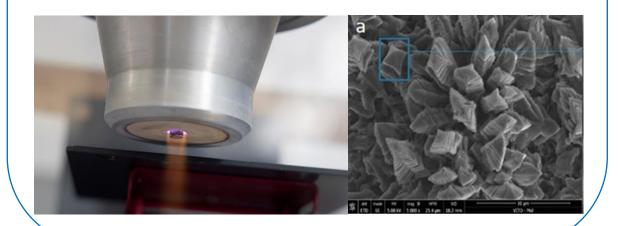
Battery materials R&D

Why

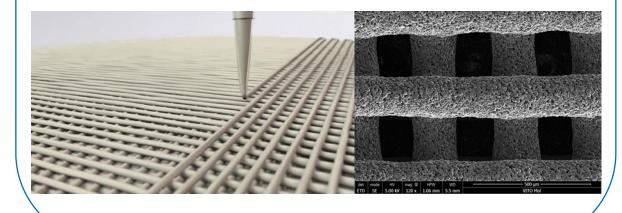
- 1. Solid state Li-ion batteries for EV
 - → Coatings on Li metal for increased stability and lifetime

→ Li-S batteries for drones: lightweight & no critical raw materials

→ Other chemistries for stationary storage: large scale & low cost



What


Optimization of material interfaces

- Coating of cathode/anode components
- Atmospheric plasma technology
- Li-S cathode optimization
- Li metal anode passivation

Electrode engineering

- 3D printing of electrodes via micro-extrusion
- Thick electrodes with optimized porosity
- Printing of LFP cathode and graphite anode
- Optimization of formulation and shape

How

- Electrode preparation and coin cell assembly
- Electrochemical characterization
- As-prepared and post-mortem characterization of developed/commercial/recycled battery materials

Who (RTD partners)

- Collaboration with R&D partners to move from coin to pouch cell manufacturing
- Collaboration with industrial partners to scale-up technologies
- Potential collaboration on:
 - Li-metal passivation for Gen 4 and Gen 5 batteries
 - 3D printing of anodes and/or cathodes
 - Na-ion battery developments: anode and/or cathode

Fully charged to innovate with you

Dirk Vangeneugden

